Local Finiteness, Distinguishing Numbers, and Tucker's Conjecture

نویسندگان

  • Florian Lehner
  • Rögnvaldur G. Möller
چکیده

A distinguishing colouring of a graph is a colouring of the vertex set such that no non-trivial automorphism preserves the colouring. Tucker conjectured that if every non-trivial automorphism of a locally finite graph moves infinitely many vertices, then there is a distinguishing 2-colouring. We show that the requirement of local finiteness is necessary by giving a nonlocally finite graph for which no finite number of colours suffices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Combinatorial Proof of Kneser's Conjecture

Kneser's conjecture, rst proved by Lovv asz in 1978, states that the graph with all k-element subsets of f1; 2; : : : ; ng as vertices and with edges connecting disjoint sets has chromatic number n ? 2k + 2. We derive this result from Tucker's combinatorial lemma on labeling the vertices of special triangulations of the octahedral ball. By specializing a proof of Tucker's lemma, we obtain self-...

متن کامل

UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...

متن کامل

Finiteness of certain local cohomology modules

Cofiniteness of the generalized local cohomology modules $H^{i}_{mathfrak{a}}(M,N)$ of two $R$-modules $M$ and $N$ with respect to an ideal $mathfrak{a}$ is studied for some $i^{,}s$ witha specified property. Furthermore, Artinianness of $H^{j}_{mathfrak{b}_{0}}(H_{mathfrak{a}}^{i}(M,N))$ is investigated by using the above result, in certain graded situations, where $mathfrak{b}_{0}$ is an idea...

متن کامل

Hedetniemi’s Conjecture Via Alternating Chromatic Number

In an earlier paper, the present authors (2013) [1] introduced the alternating chromatic number for hypergraphs and used Tucker’s Lemma, an equivalent combinatorial version of the Borsuk-Ulam Theorem, to show that the alternating chromatic number is a lower bound for the chromatic number. In this paper, we determine the chromatic number of some families of graphs by specifying their alternating...

متن کامل

Wild Partitions and Number Theory

We introduce the notion of wild partition to describe in combinatorial language an important situation in the theory of p-adic fields. For Q a power of p, we get a sequence of numbers λQ,n counting the number of certain wild partitions of n. We give an explicit formula for the corresponding generating function ΛQ(x) = ∑ λQ,nx and use it to show that λ Q,n tends to Q 1/(p−1). We apply this asymp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015